민대학교 인공지능 VILS 기반의 자율주행 제어 장치 및 방법

Futrue Car SECTION 자율주행 분야 편의 시스템

특허번호 출원번호: 10-2019-0156179(2019.11.28.) I 등록번호: 10-2139513(2020.07.24.)

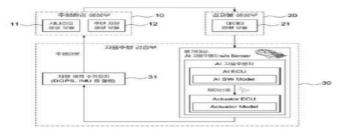
대표발명자 임세준 교수

Step.**01** 기술정보

가. 종래 기술

● 종래 기술은 주변 차량의 센싱 정보를 바탕으로 테스트를 수행하기 때문에 다양한 주행환경을 검증할 수 없으며, 실제 도로 상의 주행을 테스트 환경에 반영 시킬 수 없는 문제점이 있음

나. 특허의 효과 및 우수성


● 실제 다양한 운전자들의 주행을 학습한 고도화된 인공지능 운전자 모사 모델을 VILS 검증에 활용함으로써, 자율주행 평가의 신뢰성을 높수 있음

다. 특허의 구성 및 상세설명

● 주변 차량의 센싱 정보에 한정되지 않고 다양한 환경에서 테스트를 수행할 수 검증 모델을 제공하 며, 주행 상태에 대응하여, 실제 도로 상의 주행을 테스트 환경에 반영할 수 있는 검증 모델을 제공

라. 대표청구항

● 검증이 필요한 모델링된 도로 환경을 나타내는 상태 정보와 상기 자율주행차의 주변 차량에 대한 정보를 포함하는 주행 정보를 통해 상기 가상 환경을 생성하는 주행환경 생성부; 상기 주행환경 생성부에서 획득된 상태 정보 및 주행 정보를 3차원 OGM을 통해 레이어 분류를 이용하여 데이 터화를 진행하는 결과물 생성부; 및 상기 결과물 생성부에서 생성된 데이터로부터 산출된 자율주 행 알고리즘을 작동시켜 상기 자율주행차를 제어하고 상기 자율주행차의 실제의 움직이는 궤적을 추적 및 기록하여 상기 가상 환경에 입력하는 자율주행 검증부를 포함하고, 상기 결과물 생성부 는, 상기 3차원 OGM을 이용하여 3차원 공간에 물체가 차지하는 영역을 표시하여 상기 영역에 ID를 부여하여 데이터화하는 데이터 변환 모듈을 더 포함하고, 상기 데이터 변환 모듈은, 상기 3 차원 공간을 상기 OGM을 이용하여 자동차와 보행자를 포함하는 주행에 필요한 객체를 표시하는 제1레이어와 차선, 신호, 주행 방향을 포함하는 교통정보를 표시하는 제2레이어로 구분하며, 상기 제1레이어 및 상기 제2레이어를 통해 주행 중 주변 차량 및 교통 정보를 동시에 인식 가능한 것 을 특징으로 하는 인공지능 VILS 기반의 자율주행 제어 장치.

본 발명의 자율주행 차량의 제어로직을

[도면1] VILS(Vehicle In the Loop System)로 검증하는 [도면2] 인공지능 VILS 기반의 자율주행 제어 장치

본 발명의 실시 예에 따른 OGM(Occupancy Grid Map)을 2차원 및 3차원에 적용하는 모습

Step.**02** 적용산업


- 자율주행 테스트 및 개발 장비

Step.03 적용시장

- 전 세계 자율주행 평가 및 개발 장비의 시장 규모는 2018년 기준으로 약 1.021백만 달러에서 2024년에는 약 24.043백만 달러로 CAGR은 약 7.0%의 증가폭을 가질 것으로 전망됨
 - 자율주행 평가 및 개발 장비의 시장분석에 포함되는 기술분류로는 사용자에 의한 자동차정비장치와 개발 에 활용되는 각종 도구 및 AR/VR 등을 통해서 구현 된 자율주행 차량용 시뮬레이션 환경 등임
- 국내의 자율주행 평가-개발 장비의 시장규모는 전 세 계 시장규모의 비율로 환산하여 약 8.5% 수준으로 추 *출처 : 중소기업 기술국산화 전략품목 상세분석 산할 수 있으며, 이를 통해서 추산된 국내시장의 규모 ^(중소벤처기업부, 2021) 는 2018년 기준으로 약 796억 원, 2024년에는 약 1,404억 원 수준으로 증가할 것으로 전망됨

Step.**04** 개발정보

가. 기술개발 완성도 (TRL 단계)

기초 연구단계		실험단계		시작품 단계		실용화 단계		실용화	→ 기술개발 완성도
기초 이론/실험	기본 개념 정립	기본성능 겸중	실험실규 모성능 검 ^중	유사환경 성능 평가	파일렷 규모 성능 평가	상용모델 개발 성능평가	시제품 인증 표준화	사업화	실험 단계 중 4 실험실 규모
1	2	3	4	5	6	7	8	9	성능 검증 단계

나. 관련 추가 특허 목록

특허번호	특허명	출원인
10-2050426	운전자 모사 모델 기반의 자율주행 제어 장치 및 방법	임세준 교수
10-2155054	인공지능을 활용한 주변차량 컷인 의도 예측 방법	임세준 교수

Step.**05** 문의정보

기술보유기관	국민대학교 산학협력단	김윤주	02-910-5307
기술거래기관	(주)이산컨설팅그룹	조은솔	02-556-5559